Doctoral Dissertation

A Study on Radar Signal Processing and Object Segmentation for Drone System Applications

Department of Electronics and Computer Engineering

Graduate School of Chonnam National University

NGUYEN Huy Toan

February 2020

A Study on Radar Signal Processing and Object Segmentation for Drone System Applications

Department of Electronics and Computer Engineering Graduate School of Chonnam National University

NGUYEN Huy Toan

Supervised by Professor Kim, Jin Young

A dissertation submitted in partial fulfillment of the requirements for the Doctor of Engineering in Electronics Engineering.

Committee in Charge:

HONG, Sung Hoon NA, Seung You KIM, Jin Young PHAM, The Bao SEO, Kyung Sik

February 2020

TABLE OF CONTENTS

Conten	itsi
LIST (DF FIGURESiv
LIST (DF TABLEvii
GLOS	SARYviii
Abstra	ct xi
Chapte	er 1. INTRODUCTION
1.	Drone system overview
1.1.	Drone system hardware configuration
1.2.	Drone system architecture
2.	Drone applications in this study
3.	Objectives of the study17
4.	Contribution of the thesis
5.	Outline
Chapte	er 2. IMPULSE RADAR SIGNAL PROCESSING
1.	Motivations
2.	The proposed radar system
2.1.	Hardware configuration
2.2.	Software algorithms
3.	Experimental setup
4.	Experimental results
4.1.	Distance estimation result
4.2.	Distance maintenance result
5.	Conclusion
Chapte	er 3. FMCW RADAR SIGNAL PROCESSING
1.	Motivation and Related Works
2.	Data Collection Method
3.	Methodology
3.1.	Preprocessing Data
3.2.	Background Modeling based on Robust PCA35

3.3.	Moving Objects Localization	39
4.	Experimental setup	40
5.	Experimental results	42
5.1.	Performance across different approaches	42
5.2.	Performance across different updating methods	48
5.3.	Impact of the sliding window size	49
5.4.	Impact of the number of iteration	50
6.	Conclusion	51
Chapt	er 4. OBJECT SEGMENTATION BASED ON DEEP LEARNING	52
1.	Motivation and Related Works	52
1.1.	Motivation	52
1.2	Related works	54
2.	Proposed method	59
2.1.	Data preprocessing	60
2.2.	The Proposed Network Architecture	61
2.2.	1. Modified U-net network	64
2.2.	2. High-level feature network	64
2.3.	Training process	65
2.4.	Data post processing	66
3.	Experiment and results	67
3.1.	Datasets	67
3.2.	Experimental setup	68
3.3.	Experimental results on CDF dataset	69
3.4.	Experimental results on AigleRN dataset	71
3.5.	Experimental results on cross dataset	75
4.	Conclusion	77
Chapt	er 5. DRONE SYSTEM APPLICATIONS	79
1.	Wind turbine inspection using drone system	79
1.1.	Motivation and related works	79
1.2.	Experimental setup and data record method	81

1.3.	Experimental results	82
1.4.	Conclusion	85
2.	Plant growth stage recognition using drone system	86
2.1.	Motivation and related works	86
2.2.	Method	88
2.3.	Experiments	90
2.4.	Conclusion	93
Chapte	er 6. CONCLUSION AND FUTURE WORKS	
1.	Conclusion	94
2.	Future works	95
Refere	ences	
Acknowledgments		
(국문초록)106		

LIST OF FIGURES

Figure 1.1. The drone system applications. (a) Monitoring applications; (b) Firefighting
application; (c) Rescue application, (d) Agriculture application13
Figure 1.2. The prototype of drone system (a) Using Digital camera and IR-UWB radar, (b)
Using RPi Camera and FMCW radar14
Figure 1.3. The proposed system architecture
Figure 1.4. Drone system applications. (a) Wind turbine inspection, (b) Plant growth stage
recognition
Figure 2.1 Radar module hardware configuration
Figure 2.2. Radar module prototype
Figure 2.3. Distance measurement algorithm flow chart
Figure 2.4. Radar data normalization result
Figure 2.5. Shape of logarithm function
Figure 2.6. Smooth calibration function using Polynomial regression
Figure 2.7. Testing of IR-UWB radar sensor
Figure 2.8. Reference distance and computed output
Figure 2.9. Distance maintenance results
Figure 3.1. 120 GHz Radar front end block diagram [19]
Figure 3.2. FMCW Radar sensor connection. (a) Real connection, (b) Specific connection
diagram
Figure 3.3. Raw data signal. (a) Raw data frame, (b) Raw data matrix in the distance scale.33
Figure 3.4. Calibration experimental setup

Figure 3.5. Time-based sliding window
Figure 3.6. Block diagram for detecting moving objects
Figure 3.7. AMPD algorithm [26]
Figure 3.8. Experimental Scenarios. (a) Indoor environment; (b) Outdoor environment 42
Figure 3.9. Original data with one moving object
Figure 3.10. Detection performance across different methods
Figure 3.11.Noise removed signals and target position for one moving object in Figure 3.9. (a)
RPCA via IALM [15], (b) RPCA via GD [17], (c) Online RPCA [16], (d) Proposed method.
Figure 3.12. Target detection results for multiple moving objects. (a) Two moving objects, (b)
Three moving objects, (c) Four moving objects, (d) Five moving objects. (From top to bottom:
Original data, RPCA via IALM [15], RPCA via GD [17])46
Figure 3.13. Target detection results for multiple moving objects. (a) Two moving objects, (b)
Three moving objects, (c) Four moving objects, (d) Five moving objects. (From top to bottom:
Original data, Online RPCA [16] and proposed method results)
Figure 3.14. Detection performance across different update methods
Figure 3.15. Impact of the sliding window size
Figure 3.16. Impact of the number of iteration
Figure 4.1. Overview of crack identification
Figure 4.2. Illustration of data pre-processing steps. (a) Original image, (b) ground truth, (c)
grey-scale image, (d) normalized image, (e) histogram equalization image, and (f) pre-
processed image
Figure 4.3. The schematic architecture of the proposed network

Figure 4.4. Crack prediction results by our proposed method (From top to bottom: Original
images, Ground truth, Probability map, Binary output)67
Figure 4.5. Crack prediction results on CFD dataset (From top to bottom: Original image,
ground truth, MFCD [46], CNN [56] and our results
Figure 4.6. Results on AigleRN dataset. From left to right: Original images, Ground truth
images, FFA, MPS, MFCD, CNN, the proposed method
Figure 4.7. Detection results on AigleRN dataset. From top to bottom: Original images,
Ground truth images, FFA, MPS, MFCD, CNN, and our results
Figure 4.8. Detection results on cross data generation. (a), (b), (c), (d) Original images and
ground truth of CFD dataset and AigleRN dataset, (e) Training / Testing: CFD / CFD, (f)
Training / Testing: AigleRN / AigleRN, (g) Training / Testing: AigleRN / CFD, and (h)
Training / Testing: CFD / AigleRN77
Figure 5.1. Wind power energy in South Korea [72]79
Figure 5.2. Proposed Network architecture
Figure 5.3. Wind turbine inspection using the drone system. (a) Drone system working state,
(b) The prototype of drone system
Figure 5.4. Illustration of predicting steps. (a) Input image, (b) Network threshold output, (c)
Contours detection, (d) Final abnormal appearance results
Figure 5.5. Real inspection flight on garlic fields
Figure 5.6. Scaling garlic size using ruler
Figure 5.7. Illustration of image processing to extract the garlic information. (a) Garlic
contours detection, (b) Final garlic size results
Figure 5.8. Example results of plant recognition

LIST OF TABLE

Table 2.1. Numerical results for distance maintenance algorithm 27
Table 3.1. Setup parameters. 41
Table 3.2. Processing speed across different methods. 44
Table 4. 1. Comparison of different methods on the same data set (CFD dataset and AigleRN
dataset)
Table 4.2. Comparison of major deep learning approaches for crack detection and
segmentation
Table 4.3. Detection results with five pixels of tolerance margin on CFD dataset. 71
Table 4.4. Detection results with two pixels of tolerance margin on CFD dataset
Table 4.5. Detection results with five pixels of tolerance margin on AigleRN dataset
Table 4.6. Detection results with two pixels of tolerance margin on AigleRN dataset75
Table 4.7. Detection results on cross data generation with five pixels of tolerance margin76
Table 4.8. Detection results on cross data generation with two pixels of tolerance margin76
Table 5.1. Comparison between our results and the original U-net network. 84
Table 5.2. Performance comparison. 84
Table 5.3. Computational cost
Table 5.4. Pixel-wise performace on the test dataset. 90
Table 5.5. Object-wise performace on the test dataset

GLOSSARY

AEE	Average Euclidean Error
AMPD	Automatic Multiscale-based Peak Detection
CFAR	Constant False Alarm Rate
CFD	Crack Forest Dataset
CLAHE	Contrast Limited Adaptive Histogram Equalization
CNNs	Convolutional Neural Networks
CPU	Central Processing Unit
DCNN	Deep Convolutional Neural Networks
DLL	Delay-Locked Loop
DNN	Deep Neural Network
FFA	Free-Form Anisotropy
FCN	Fully Convolutional Network
FFT	Fast Fourier Transform
FMCW	Frequency-Modulated Continuous-Wave
FN	False Negative
FP	False Positive
GMM	Gaussian Mixture Model
GPS	Global Positioning System
GUI	Graphical User Interface
IALM	Inexact Augmented Lagrange Multipliers
ІоТ	Internet of Things
IR-UWB	Impulse Radio – Ultra Wideband
ISM	Industry-Science-Medical
LBP	Local Binary Pattern